Abstract

Fast-Lipschitz optimization has been recently proposed as a new framework with numerous computational advantages for both centralized and decentralized convex and non-convex optimization problems. Such a framework generalizes the interference function optimization, which plays an essential role distributed radio power optimization over wireless networks. The characteristics of Fast-Lipschitz methods are low computational and coordination complexity compared to Lagrangian methods, with substantial benefits particularly for distributed optimization. These special properties of Fast-Lipschitz optimization can be ensured through qualifying conditions, which allow the Lagrange multipliers to be bound away from zero. In this paper, the Fast-Lipschitz optimization is substantially extended by establishing new qualifying conditions. The results are a generalization of the old qualifying conditions and a relaxation of the assumptions on problem structure so that the optimization framework can be applied to many more problems than previously possible. The new results are illustrated by a non-convex optimization problem, and by a radio power optimization problem which cannot be handled by the existing Fast-Lipschitz theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.