Abstract
In this paper, we introduce and investigate a new extension of the beta function by means of an integral operator involving a product of Bessel-Struve kernel functions. We also define a new extension of the well-known beta distribution, the Gauss hypergeometric function and the confluent hypergeometric function in terms of our extended beta function. In addition, some useful properties of these extended functions are also indicated in a systematic way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.