Abstract

Although the basic aspects of protein synthesis are preserved in all kingdoms of life, there are many important structural and functional differences between bacterial and the more complex eukaryotic ribosomes. High-resolution cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of eukaryotic ribosomes have revealed the complex architectures of eukaryotic ribosomes and species-specific variations in protein and ribosomal RNA (rRNA) extensions. They also enabled structural studies of a range of eukaryotic ribosomal complexes involved in translation initiation, elongation, and termination, revealing unique mechanistic features of the eukaryotic translation process, especially with respect to the identification and recognition of translation start and stop codons on messenger RNAs (mRNAs). Most recently, structural biology has provided insights into the eukaryotic ribosomal biogenesis pathway by visualizing several of its complex intermediates. This review highlights the past decade's structural work on eukaryotic ribosomes and its implications on our understanding of eukaryotic translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.