Abstract

AbstractIn [17], we introduced an extensional variant of generic realizability [22], where realizers act extensionally on realizers, and showed that this form of realizability provides inner models of $\mathsf {CZF}$ (constructive Zermelo–Fraenkel set theory) and $\mathsf {IZF}$ (intuitionistic Zermelo–Fraenkel set theory), that further validate $\mathsf {AC}_{\mathsf {FT}}$ (the axiom of choice in all finite types). In this paper, we show that extensional generic realizability validates several choice principles for dependent types, all exceeding $\mathsf {AC}_{\mathsf {FT}}$ . We then show that adding such choice principles does not change the arithmetic part of either $\mathsf {CZF}$ or $\mathsf {IZF}$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.