Abstract

Shallow dip angles (⩽45°) suggested by field observations of continental extensional faults are not predicted by classical isotropic Mohr-Coulomb-Anderson theory. Earthquake data indicate that normal faults exist in the upper crust with dip angles commonly as shallow as 30°. Some structural evidence suggests brittle-normal faulting with dip angles as shallow as 10°. One explanation of the apparent conflict between theory and structural/seismic observations is that intrinsically weak, shallow-dipping pre-existing faults are preferentially reactivated. Any reduction in frictional strength of the pre-existing structure below that of surrounding rock increases the likelihood that such structures will be first breaking when extension is initiated. Enhanced fluid pore pressure on the pre-existing fault reduces the effective strength and can further enhance shallow fault reactivation. An analytical treatment clarifies the roles of geometry, intact/pre-existing fault strengths and fluid pore pressures. Frictional strength ratios of 3 or greater could account for extremely shallow normal faults (dips 10–20°) without consideration of pore pressures in excess of the least principal stress or of principal stress systems rotated away from the gravity vector. Moderate reduction in friction ( 3 4 ) with respect to wall rock can reduce the dip to 30° and can account for shallow normal-slip earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.