Abstract

To simulate three-dimensional glaze ice accretion on a typical aircraft surface, the model of water film flow and ice accretion on a curved surface based on two coupled partial differential equations proposed by Myers et al. is extended in nonorthogonal curvilinear coordinates. Then, the governing equation for water film flow coupling with a Stefan model for glaze icing is built up. An efficient implicit–explicit numerical method is proposed for solving the governing equations. The glaze ice computations on two-dimensional airfoils and three-dimensional typical geometries in in-flight icing conditions are completely accomplished. Validation results of two-dimensional calculation cases with experimental ice shapes are presented. Three-dimensional simulations of glaze ice accretion on a sphere and a swept wing are successfully carried out and compared with ice profiles from icing tunnel tests and simulations based on the classical Messinger model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.