Abstract

SummaryThis paper proposes a new modeling approach that is experimentally validated on piezoelectric systems in order to provide a black‐box pseudolinear model for complex systems control. Most of the time, one uses physical based approaches. However, sometimes complex phenomena occur in the system due to atypical changes of the process behavior, output noise or some hard nonlinearities. Therefore, we adopt identification methods to achieve the modeling task. The microdisplacements of the piezoelectric systems generate atypical data named outliers, leading to large estimated prediction errors. Since these errors disturb the classical normal probability density function, we choose here, as corrupted distribution model, the gross error model (GEM). In order to deal more efficiently with the outliers, we use the Huber's function, as mixed L2/L1 norms in which the tuning threshold named scaling factor is extended. From this function, a cost function also named PREC as parameterized robust estimation criterion is established. The identification is performed by choosing an Output Error model structure. In order to express the asymptotic covariance matrix of the robust estimator, we present a L finite Taylor's expansion to linearize the gradient and the hessian of the PREC. Experimental results are presented and discussed. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.