Abstract

With increased use of light-weight materials with low factors of safety, non-destructive testing becomes increasingly important. Thanks to the advancement of infrared camera technology, pulse thermography is a cost efficient way to detect subsurface defects non-destructively. However, currently available evaluation algorithms have either a high computational cost or show poor performance if any geometry other than the most simple kind is surveyed. We present an extension of the thermographic signal reconstruction technique which can automatically segment and image defects from sound areas, while also estimating the defect depth, all with low computational cost. We verified our algorithm using real world measurements and compare our results to standard active thermography algorithms with similar computational complexity. We found that our algorithm can detect defects more accurately, especially when more complex geometries are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.