Abstract

Light sheet illumination is the basis in developing light sheet microscopy (LSM), a technique with significant advantages compared with other classical techniques. Most proposed optical systems to generate light sheets for LSM use many optical elements, which require extensive adjustments and are costly; moreover, they generate a nonuniform or semiuniform light sheet or have a short depth of field (DOF). A simple scheme using a pair of double slits and a cylindrical lens for generating a quasi-nondiffracting 2D light sheet was reported in Opt. Lett.40, 5121 (2015)OPLEDP0146-959210.1364/OL.40.005121. In the present investigation, we elaborate on the optimization of the mask used. As the separation between the two slits increases, the light sheet becomes thinner and the DOF smaller and vice versa. The slits' width does not affect the light sheet thickness, but it does affect the intensity of the side lobes. For convergence angles of the inner slits from 0.75° to 8°, an optimum ratio of the slits' separation/width of 2.182 is recommended. The obtained light sheet is quasi-diffraction-free, namely, while its DOF is comparable with that of a Gaussian beam, its diffraction broadening is substantially smaller. We also add to the previously developed configuration a Powell lens in order to expand the beam in the spanwise direction while keeping nearly constant intensity in this dimension. We perform scalar diffraction theory calculations and conduct measurements showing the nearly constant intensity in the significantly broadened span of the light sheet. Potential applications for the augmented width include imaging of certain large embryos, laser micromachining, and microparticle image velocimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call