Abstract

In the present contribution we extend a previously proposed so-called solid–shell concept which incorporates only displacement degrees of freedom to the simulation of large elastic and large elastoplastic deformations of shells. Therefore, the modifications necessary for hyper-elastic or elastoplastic material laws are discussed. These modifications concern the right Cauchy–Green tensor for large elastic deformations, respectively, the deformation gradient for elastoplasticity which then are consistent to the modified Green–Lagrange strains that are necessary for transverse shear and membrane locking free solid–shell element formulations. However, in addition to the locking mentioned above especially in the range of plasticity incompressibility locking becomes important. Thus, the second major aspect of this contribution is the discussion of several ways to avoid incompressibility locking also including the investigation of eigenmodes. Finally, a selective reduced integration scheme with reduced integration for the volumetric term is employed and described in detail, although it is limited to material laws which allow the decomposition into a volumetric and a deviatoric part. Some numerical examples show the range of application for the proposed elements. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.