Abstract

A rotating mass dipole can be used to understand the dynamical behaviors around elongated asteroids as well as binary asteroids. In this paper an improved dipole model with oblateness in both primaries is investigated. The dynamical equations of a particle around the improved model are first derived by introducing the oblateness coefficients. The characteristic equations of equilibrium points are obtained, resulting in the emergence of new equilibria in the equatorial plane and the plane xoz depending on the shape of the spheroid. Numerical simulations are performed to illustrate the distribution of these equilibrium points. Significant influence from the oblateness of the primaries on the topological structure is also analyzed via zero-velocity curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call