Abstract

The tensor product (TP) model transformation defines and numerically reconstructs the Higher-Order Singular Value Decomposition (HOSVD) of functions. It plays the same role with respect to functions as HOSVD does for tensors (and SVD for matrices). The need for certain advantageous features, such as rank/complexity reduction, trade-offs between complexity and accuracy, and a manipulation power representative of the TP form, has motivated novel concepts in TS fuzzy model based modelling and control. The latest extensions of the TP model transformation, called the multi- and generalised TP model transformations, are applicable to a set functions where the dimensionality of the outputs of the functions may differ, but there is a strict limitation on the dimensionality of their inputs, which must be the same. The paper proposes an extended version that is applicable to a set of functions where both the input and output dimensionalities of the functions may differ. This makes it possible to transform complete multicomponent systems to TS fuzzy models along with the above-mentioned advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.