Abstract

The LP-Newton method solves the linear programming problem (LP) by repeatedly projecting a current point onto a certain relevant polytope. In this paper, we extend the algorithmic framework of the LP-Newton method to the second-order cone programming problem (SOCP) via a linear semi-infinite programming (LSIP) reformulation of the given SOCP. In the extension, we produce a sequence by projection onto polyhedral cones constructed from LPs obtained by finitely relaxing the LSIP. We show the global convergence property of the proposed algorithm under mild assumptions, and investigate its efficiency through numerical experiments comparing the proposed approach with the primal-dual interior-point method for the SOCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.