Abstract

We investigate the optimal filtering problem in the simplest Gaussian linear system driven by fractional Brownian motions. At first we extend to this setting the Kalman–Bucy filtering equations which are well-known in the specific case of usual Brownian motions. Closed form Volterra type integral equations are derived both for the mean of the optimal filter and the variance of the filtering error. Then the asymptotic stability of the filter is analyzed. It is shown that the variance of the filtering error converges to a finite limit as the observation time tends to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.