Abstract
This paper provides a new model to evaluate the yield stress of suspensions, slurries or pastes, based on the release of a finite volume of material onto a horizontal surface. Considering the height (h) and the radius (R) of the sample at the flow stoppage, two asymptotic regimes, where h higher than R or h lower than R, lead to different analytical models that allow the determination of yield stress. Experimental observations show typical sample shape at stoppage between slump and spread. Based on these observations, we have developed a new analytical model to evaluate accurately the yield stress of materials in this intermediate regime. The validity of this model was evaluated from data obtained using various Carbopol® dispersions. The yield stress measured with the proposed model was compared with the yield stress evaluated from shear flow curves obtained with roughened plate/plate geometry fitted to the Herschel-Bulkley model. Results show the relevance of the proposed model which that can be applied in the range between models used for the two asymptotic regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.