Abstract

In this paper, we extend the saturation results for the sampling Kantorovich operators proved in a previous paper, to more general settings. In particular, exploiting certain Voronovskaja-formulas for the well-known generalized sampling series, we are able to extend a previous result from the space of $$C^2$$ -functions to the space of $$C^1$$ -functions. Further, requiring an additional assumption, we are able to reach a saturation result even in the space of the uniformly continuous and bounded functions. In both the above cases, the assumptions required on the kernels, which define the sampling Kantorovich operators, have been weakened with respect to those assumed previously. On this respect, some examples have been discussed at the end of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.