Abstract
Our aim in this work is to extend the primal-dual interior point method based on a kernel function for linear fractional problem. We apply the techniques of kernel function-based interior point methods to solve a standard linear fractional program. By relying on the method of Charnes and Cooper [3], we transform the standard linear fractional problem into a linear program. This transformation will allow us to define the associated linear program and solve it efficiently using an appropriate kernel function. To show the efficiency of our approach, we apply our algorithm on the standard linear fractional programming found in numerical tests in the paper of A. Bennani et al. [4], we introduce the linear programming associated with this problem. We give three interior point conditions on this example, which depend on the dimension of the problem. We give the optimal solution for each linear program and each linear fractional program. We also obtain, using the new algorithm, the optimal solutions for the previous two problems. Moreover, some numerical results are illustrated to show the effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Numerical Analysis and Approximation Theory
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.