Abstract

The confined polymer reference interaction site model (Wall-PRISM) integral equation theory was applied to investigate the microphase separation behaviour of copolymers at a solid surface or in bulk. In particular, the effects of the solid surface on polymer conformation were taken into account for constructing a set of novel bridge functionals for different segments to improve the theory. After the integration of the bridge functionals, the theory can well reproduce the simulated density profiles at different microphase domains of flexible–flexible, flexible–rigid, and linear–branched copolymers. As a consequence, the application scope of the inhomogeneous theoretical approach has been extensively extended. This work provides a prospective way to quantitatively predict the density profiles in microphase separation for block copolymers with sophisticated conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call