Abstract

Haar’s theorem ensures a unique nontrivial regular Borel measure on a locally compact Hausdorff topological group, up to multiplication by a positive constant. In this article, we extend Haar’s theorem to the case of locally compact Hausdorff strongly topological gyrogroups. We simultaneously prove the existence and uniqueness of a Haar measure on a locally compact Hausdorff strongly topological gyrogroup, using the method of Steinlage. We then find a natural relationship between Haar measures on gyrogroups and on their related groups. As an application of this result, we study some properties of a convolution-like operation on the space of Haar integrable functions defined on a locally compact Hausdorff strongly topological gyrogroup

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.