Abstract

The computationally efficient phase-screen forward modeling technique is extended to allow investigation of nonnormal raypaths. The code is developed to accommodate all diffracted and converted phases up to critical angle, building on a geometric construction method. The new approach relies upon prescanning the model space to assess the complexity of each screen. The propagating wavefields are then divided as a function of horizontal wavenumber, and each subset is transformed to the spatial domain separately, carrying with it angular information. This allows both locally accurate 3D phase corrections and Zoeppritz reflection and transmission coefficients to be applied. The phase-screen code is further developed to handle simple anisotropic media. During phase-screen modeling, propagation is undertaken in the wavenumber domain where exact expressions for anisotropic phase velocities are available. Traveltimes and amplitude effects from a range of anisotropic shales are computed and compared with previous published results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.