Abstract
This paper focuses on the kernel-based system identification methods, which estimate the impulse response of the target system in the Bayesian estimation framework. This paper discusses about continuous-time systems, and proposes a new kernel based on a prior that the relative degree of the target system is higher than or equal to two. Such a prior is identical to a prior on the continuity of the impulse response at time zero. The proposed kernel is an extension of the first-order Stable Spline kernel, which is one of the most famous kernels. Numerical examples are shown to demonstrate the effectiveness of the proposed kernel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.