Abstract

Discrete-dipole approximation (DDA) model has been widely used to provide quantitative predictions on the linear optical absorption of metallic nanostructures (MNS) irrespective of their geometry. Here, we demonstrate that it can be extended to the computations of MNS’ nonlinear light absorption. In the extended DDA (e-DDA) modeling, Drude’s dielectric function (or standard dielectric function) for given MNS in the dark is employed for the computation of linear absorption in an ensemble of the MNS. As excited by intense laser light, the dielectric function is altered in the presence of photoexcited electrons in the MNS. With the altered dielectric function and quasi-equilibrium approximation, the DDA model is reapplied to acquire the quantitative simulation on the nonlinear optical absorption. The results of e-DDA modeling are in good agreement with experimental data for gold nanorods and nanospheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.