Abstract

The equation of state (EOS) for hard-sphere fluid derived from compressibility routes of Percus-Yevick theory (PYC) is extended. The two parameters are determined by fitting well-known virial coefficients of pure fluid. The extended cubic EOS can be directly extended to multi-component mixtures, merely demanding the EOS of mixtures also is cubic and combining two physical conditions for the radial distribution functions at contact (RDFC) of mixtures. The calculated virial coefficients of pure fluid and predicted compressibility factors and RDFC for both pure fluid and mixtures are excellent as compared with the simulation data. The values of RDFC for mixtures with extremely large size ratio 10 are far better than the BGHLL expressions in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.