Abstract

An extension of a simplified method for molecular correlation energy calculations to molecules containing third row atoms is presented. In addition to the use of pseudo-potentials in the calculations, the consequences of this extension on the different components of the energy partition which is the basic idea of the method, is analysed. Particular emphasis is placed on the specific role played by the 3d orbitals in each of the energy components. First, at the zeroth order, the energy is found to be very sensitive to the optimization of the 3d polarization functions. Secondly, the internal correlation energy, calculated by CI, requires the optimization of distinct 3d correlation orbitals to describe adequately the strong near-degeneracy effects that occur within the valence space. Finally it is shown that the 3d orbitals contribute partially to the non-internal correlation energy and that, the “atoms-in-molecule” structures corresponding typically to all-external contributions are negligible. The concept of error energy is introduced in place of the non-internal correlation energy: it includes the relativistic contributions within the semi-empirical tables. Such tables are presented for second row atoms and for the chlorine atom. From these tables, predicted values for some atomic term energies, experimentally undetermined, are derived. The methodological tests are limited here to the chlorine atom which is chosen for further applications in the next paper of this series. The conclusions concerning the applicability of the method to third row atoms are however quite general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call