Abstract

The previously developed integrated algorithm for the joint treatment of gas-phase electron diffraction and vibrational spectroscopic data is extended to include systems with large-amplitude oscillatory motion. In addition, the treatment is augmented by the inclusion of microwave rotational constants. As in the previous work, the analysis of data from experimental sources is guided by quantum mechanical molecular geometry and force field optimization results. The computed force field matrix can be corrected empirically with the aid of suitable scale factors. Centrifugal distortion corrections to interatomic distances are included. The standard deviations of the parameters determined and the correlation coefficients can now be estimated. The principal design of the developed computer program is outlined, and some methodological problems associated with diffraction analysis of molecules with large-amplitude motion are discussed. To provide an example of a problem susceptible to attack by the present method an account is made of the re-analysis of diffraction data for 4-fluorobenzaldehyde collected earlier on the Balzers apparatus in Oslo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call