Abstract

The single- or multi-variable control of full-state feedback with a full-order observer is applied to design a nonlinear Pressurized Water Reactor (PWR) core load following control system for regulating the core power level and axial power shape. A two-point based nonlinear PWR core model without boron and with the power rod and Axial Offset (AO) rod is built. The linearized single-variable (multi-variable) core model under Case 1 (Case 2) classified by two movable regions of power rod is constructed. Based on a linearized core model, the state feedback control is implemented by utilizing the robust pole assignment method with an additional integrator for Case 1 and devising an integral decoupling control system with a dynamic controller for Case 2; a Kalman filter with robustness is designed as an observer for each case. The integration of the state feedback and the observer structures a controller of the nonlinear core model of each case. For Case 1 (Case 2), the nonlinear core model and the state feedback single-variable (multi-variable) control construct the nonlinear PWR core load following control system. Finally, the control system of each case is simulated and the simulation results show that the control system is effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call