Abstract
Let G be a Gaussian vector taking its values in a separable Fréchet space E. We denote by $\gamma$ its law and by $(H,\Vert\!\cdot\!\Vert)$ its reproducing Hilbert space. Moreover, let X be an E-valued random vector of law $\mu$. In the first section, we prove that if $\mu$ is absolutely continuous relative to $\gamma$, then there exist necessarily a Gaussian vector $G'$ of law $\gamma$ and an H-valued random vector Z such that $G' + Z$ has the law $\mu$ of X. This fact is a direct consequence of concentration properties of Gaussian vectors and, in some sense, it is an unexpected achievement of a part of the Cameron--Martin theorem. In the second section, using the classical Cameron--Martin theorem and rotation invariance properties of Gaussian probabilities, we show that, in many situations, such a condition is sufficient for $\mu$ being absolutely continuous relative to $\gamma$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.