Abstract

We prove that any mixed-integer linear extended formulation for the matching polytope of the complete graph on $n$ vertices, with a polynomial number of constraints, requires $\Omega(\sqrt{\sfrac{n}{\log n}})$ many integer variables. By known reductions, this result extends to the traveling salesman polytope. This lower bound has various implications regarding the existence of small mixed-integer mathematical formulations of common problems in operations research. In particular, it shows that for many classic vehicle routing problems and problems involving matchings, any compact mixed-integer linear description of such a problem requires a large number of integer variables. This provides a first non-trivial lower bound on the number of integer variables needed in such settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.