Abstract

One of the main objectives of LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in the steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with special emphasis on the local heating properties. As a result, a central electron temperature of more than 10 keV with an electron density of 0.6 × 1019 m−3 is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. The 168 GHz ECRH system demonstrated efficient heating at densities more than 1.0 × 1020 m−3. The continuous wave ECRH system is successfully operated to sustain a 756 s discharge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.