Abstract
Palatal expansion has several orthodontic and orthopedic applications, such as increasing maxillary transverse dimensions and correcting maxillary atresia, oral breathing, and skeletal cross-bites. Little is known about the strain to which craniofacial bones are submitted when a palatal expander is loaded. The objectives of the present work were to propose a new palatal bone-borne titanium device (expansion screw), to determine patterns of strain distribution in craniofacial bones during palatal expansion and to show the clinical results of a new palatal expander supported by implants. For in vitro testing, the palatal expander supported by two commercially pure titanium (cp Ti) implants was inserted parallel to the median palatine suture of four dry adult human skulls. Uniaxial and triaxial strain gauges were attached to craniofacial bones and connected to a signal acquisition system. An expansion screw was turned and strain data were collected during palatal expansion. The results showed that the bone strain distribution in craniofacial bones loaded by the palatal bone-borne titanium device was complex: the strain was tensile in the palatine cortical bone and compressive in pterygopalatine processes, nasal bones, and orbital floor. The maximum compressive strain occurs in the upper portion of the pterygopalatine processes and the strain changes from compressive to tensile in the zygomatic process. The experimental results suggest that the bone strain due to the palatal expander is distributed over all craniofacial bones and that the upper portions of pterygopalatine processes are the main sites of resistance to palatal expansion. The new palatal expander supported by two cp Ti implants proposed was employed on adult patient as an illustrative report, where adequate palatal expansion was achieved. The new protocol proposed was less invasive, risky, painful and costless for the correction of moderate maxillary transverse deficiency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.