Abstract

Nowadays, a very widespread of smartphones, especially Android smartphones, is observed. This is due to presence of many companies that produce Android based phones and provide them to consumers at reasonable prices with good specifications. The actual benefit of smartphones lies in creating communication between people through the exchange of messages, photos, videos, or other types of files. Usually, this communication is through the existence of an access point through which smartphones can connect to the Internet. However, the availability of the Internet is not guaranteed in all places and at all times, such as in crowded places, remote areas, natural disasters, or interruption of the Internet connection for any reason. To create a communication between devices, it is resorted to creating an ad hoc network using Device-to-Device technology. Wi-Fi Direct technology offers a suitable platform for creating an ad hoc network, as it supports the speed and range of standard Wi-Fi. In this paper, a mechanism is proposed to build an infrastructure-less ad hoc network, through developing the Wi-Fi direct protocol for Android smartphones. This network provides users ability to have a reliable communication, using the reliable Transmission Control Protocol only, and can continuously expand. Therefore it would be very beneficial in the absence of other infrastructure communication media such as cellular or Wi-Fi internet access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.