Abstract
Abstract This paper illustrates the coupling of water quality model components in High Level Architecture (HLA), a computer architecture for constructing distributed simulations. HLA facilitates interoperability among different simulations and simulation types and promotes reuse of simulation software modules. It was originally developed for military applications but the platform is finding increasing applicability for civilian purposes. The models from the Water Quality Analysis Simulation Program (WASP5) were implemented in HLA to extend its Monte Carlo uncertainty analysis capabilities. The models include DYNHYD (hydrodynamics), EUTRO (phytoplankton and nutrient dynamics) and TOXI (sediment and micropollutant transport). The uncertainty analysis investigated the impact of errors in the hydrodynamic parameters (weir discharge and roughness coefficients) and boundary conditions (upstream and tributary discharge) on the uncertainty in the water quality output variables. It was found that the contribution of the hydrodynamic parameter error to the water quality output uncertainty is comparable to that obtained from the error in the water quality parameters. The error in the boundary condition input data is also an important contributor to model uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.