Abstract

Given two distinct subsets A, B in the state space of some dynamical system, transition path theory (TPT) was successfully used to describe the statistical behavior of transitions from A to B in the ergodic limit of the stationary system. We derive generalizations of TPT that remove the requirements of stationarity and of the ergodic limit and provide this powerful tool for the analysis of other dynamical scenarios: periodically forced dynamics and time-dependent finite-time systems. This is partially motivated by studying applications such as climate, ocean, and social dynamics. On simple model examples, we show how the new tools are able to deliver quantitative understanding about the statistical behavior of such systems. We also point out explicit cases where the more general dynamical regimes show different behaviors to their stationary counterparts, linking these tools directly to bifurcations in non-deterministic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.