Abstract

Transformation optics makes use of coordinate transformations to explore the possibilities offered by artificially structured metamaterials for the manipulation of a wide variety of electromagnetic phenomena. Since a decade, transformation optics has consistently extended its scope. Initially, coordinate transformations were only applied to the transformation of light in the simplest of optical setups, i.e., empty space [1,2]. In particular, straight light trajectories were being transformed into curved ones, e.g., avoiding a specific region in space (invisibility devices), bending over a specific angle (benders and splitters), and focussing to a particular point (lenses). Today, research efforts go beyond the transformation of empty space, allowing metamaterials to further enhance our control on electromagnetic phenomena other than light propagation. In this contribution, I will review our work on transformation optics to manipulate guided modes along and optical forces between metamaterial waveguides [3,4], the emission of Cerenkov radiation due to fast charged particles [5,6], and the Goos-Hanchen shift at metamaterial surfaces [7].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.