Abstract

Baeyer-Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we selected previously uncharacterised positions as well as known hot-spots to be targeted by focused mutagenesis. We were able to mutate 11 positions in a single step by using the OmniChange method for the mutant library generation. Screening of the library using a phosphate-based activity detection method allowed identification of a quadruple mutant (P253F/G254A/R258M/L443F) active on cyclopentanone. The substrate scope of this mutant is extended to several aliphatic ketones while activity on aromatic compounds typical for PAMO was preserved. Moreover, the mutant is as thermostable as PAMO. Our results demonstrate the power of screening structure-inspired, focused mutant libraries for creating Baeyer-Villiger monooxygenases with new specificities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.