Abstract

Molecular spins on surfaces potentially used in quantum information processing and data storage require long spin excitation lifetimes. Normally, coupling of the molecular spin with the conduction electrons of metallic surfaces causes fast relaxation of spin excitations. However, the presence of superconducting pairing effects in the substrate can protect the excited spin from decaying. In this work, we show that a proximity-induced superconducting gold film can sustain spin excitations of a FeTPP-Cl molecule for more than 80 ns. This long value was determined by studying inelastic spin excitations of the S = 5/2 multiplet of FeTPP-Cl on Au films over V(100) using scanning tunneling spectroscopy. The spin lifetime decreases with increasing film thickness, along with the decrease of the effective superconducting gap. Our results elucidate the use of proximitized gold electrodes for addressing quantum spins on surfaces, envisioning new routes for tuning the value of their spin lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.