Abstract

Two-dimensional separation by nano-LC and trapped ion mobility spectrometry (TIMS) prior to Q/TOF tandem mass spectrometry significantly improves the accuracy of isobaric tag-based quantitation in proteome analysis without the need for additional measurement time for TIMS insertion between LC and Q/TOF MS. The obtained peak capacity of up to 3300 h-1 in LC/TIMS reduced the coisolation of precursor ions at the quadrupole analyzer, resulting in more accurate ratios of reporter ions derived from isobaric tags in product ion spectra obtained at the TOF analyzer. We also found that TIMS with a narrower quadrupole isolation window could reduce the ratio compression effect at least as effectively as the synchronous precursor selection method using MS3 scans without compromising sensitivity or coverage. Our results suggest that the 65 min gradient LC/TIMS/Q/TOF system is an excellent platform for high-throughput proteomics studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.