Abstract
We derive the continuum equations and boundary conditions governing phonon-mediated heat transfer in the limit of small but finite mean free path from asymptotic solution of the linearized Boltzmann equation in the relaxation time approximation. Our approach uses the ratio of the mean free path to the characteristic system lengthscale, also known as the Knudsen number, as the expansion parameter to study the effects of boundaries on the breakdown of the Fourier descrition. We show that, in the bulk, the traditional heat conduction equation using Fourier's law as a constitutive relation is valid at least up to second order in the Knudsen number for steady problems and first order for time-dependent problems. However, this description does not hold within distances on the order of a few mean free paths from the boundary; this breakdown is a result of kinetic effects that are always present in the boundary vicinity and require solution of a Boltzmann boundary-layer problem to be determined. Matching the inner, boundary layer, solution to the outer, bulk, solution yields boundary conditions for the Fourier description as well as additive corrections in the form of universal kinetic boundary layers; both are found to be proportional to the bulk-solution gradients at the boundary and parametrized by the material model and the phonon-boundary interaction model (Boltzmann boundary condition). Our derivation shows that the traditional no-jump boundary condition for prescribed temperature boundaries and no-flux boundary condition for diffusely reflecting boundaries are appropriate only to zeroth order in the Knudsen number; at higher order, boundary conditions are of the jump type. We illustrate the utility of the asymptotic solution procedure by demonstrating that it can be used to predict the Kapitza resistance (and temperature jump) associated with an interface between two materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.