Abstract

We extend PRIME, an intermediate-resolution protein model previously used in simulations of the aggregation of polyalanine and polyglutamine, to the description of the geometry and energetics of peptides containing all 20 amino acid residues. The 20 amino acid side chains are classified into 14 groups according to their hydrophobicity, polarity, size, charge, and potential for side chain hydrogen bonding. The parameters for extended PRIME, called PRIME 20, include hydrogen-bonding energies, side chain interaction range and energy, and excluded volume. The parameters are obtained by applying a perceptron-learning algorithm and a modified stochastic learning algorithm that optimizes the energy gap between 711 known native states from the PDB and decoy structures generated by gapless threading. The number of independent pair interaction parameters is chosen to be small enough to be physically meaningful yet large enough to give reasonably accurate results in discriminating decoys from native structures. The most physically meaningful results are obtained with 19 energy parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.