Abstract
We propose an extended set of differential operators for local mirror symmetry. If X is Calabi-Yau such that dimH4(X,Z)=0, then we show that our operators fully describe mirror symmetry. In the process, a conjecture for intersection theory for such X is uncovered. We also find operators on several examples of type X=KS through similar techniques. In addition, open string Picard-Fuchs systems are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.