Abstract

The prophylactic treatment of haemophilia B and the management of haemophilia A or B with inhibitors demand frequent administrations of coagulation factors due to the suboptimal half-lives of the products commercially available and currently in use, e.g. recombinant factor IX (rFIX) and recombinant factor VIIa (rFVIIa), respectively. The extension of the half-lives of rFIX and rFVIIa could allow for longer intervals between infusions and could thereby improve adherence and clinical outcomes and may improve quality of life. Albumin fusion is one of a number of different techniques currently being examined to prolong the half-life of rFIX and rFVIIa. Results from a phase I clinical trial demonstrated that the recombinant fusion protein linking FIX to albumin (rIX-FP) has a five-times longer half-life than rFIX, and preclinical studies with the recombinant fusion protein linking FVIIa to albumin (rVIIa-FP) suggest that rVIIa-FP possesses a significantly extended half-life versus rFVIIa. In this review, we describe albumin fusion technology and examine the recent progress in the development of rIX-FP and rVIIa-FP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call