Abstract

The notion of infinite companion matrix is extended to the case of matrix polynomials (including polynomials with singular leading coefficient). For row reduced polynomials a finite companion is introduced as the compression of the shift matrix. The methods are based on ideas of dilation theory. Connections with systems theory are indicated. Applications to the problem of linearization of matrix polynomials, solution of systems of difference and differential equations and new factorization formulae for infinite block Hankel matrices having finite rank are shown. As a consequence, any system of linear difference or differential equations with constant coefficients can be transformed into a first order system of dimension n = deg det D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.