Abstract

BackgroundAcidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus.ResultsBioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like), ctaABT (heme biogenesis and insertion), nuoI and nuoK (NADH complex subunits), sdrA1 (a NADH complex accessory protein) and atpB and atpE (ATP synthetase F0 subunits). The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB) encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit). Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1) a gene cluster (ctaRUS) that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2) a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool.ConclusionBioinformatic analysis coupled with gene transcript profiling extends our understanding of the iron and reduced inorganic sulfur compounds oxidation pathways in A. ferrooxidans and suggests mechanisms for their regulation. The models provide unified and coherent descriptions of these processes within the type strain, eliminating previous ambiguity caused by models built from analyses of multiple and divergent strains of this microorganism.

Highlights

  • Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH

  • Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic γ-proteobacterium that uses energy and electrons derived from the oxidation of ferrous iron (Fe(II)) and reduced inorganic sulfur compounds (RISCs) for carbon dioxide and nitrogen fixation and other anabolic processes

  • General Features of the Transcriptional Profiles RNA, isolated from mid-log A. ferrooxidans grown in either sulfur (S0) or ferrous iron (Fe(II)) medium, was used to probe gene expression using microarrays displaying unique oligonucleotides representing about 3000 predicted genes of the A. ferrooxidans type strain genome

Read more

Summary

Introduction

Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic γ-proteobacterium that uses energy and electrons derived from the oxidation of ferrous iron (Fe(II)) and reduced inorganic sulfur compounds (RISCs) for carbon dioxide and nitrogen fixation and other anabolic processes. It is a member of a consortium of microorganisms used for industrial copper recovery (bioleaching or biomining) and gold recovery (biooxidation) and contributes to the geobiochemical recycling of metals and nutrients in pristine and contaminated acid-rich environments. These ideas were first promulgated based upon theoretical considerations by Ingledew [1] but the model has been extended more recently and major parts of it are supported by experimental evidence (reviewed in [2])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call