Abstract

AbstractA mathematical model of portfolio optimization is usually represented as a bicriteria optimization problem where a reasonable tradeoff between expected rate of return and risk is sought. In a classical Markowitz model, the risk is measured by a variance, thus resulting in a quadratic programming model. As an alternative, the MAD model was developed by Konno and Yamazaki, where risk is measured by (mean) absolute deviation instead of a variance. The MAD model is computationally attractive, since it is easily transformed into a linear programming problem. An extension to the MAD model proposed in this paper allows us to measure risk using downside deviations, with the ability to penalize larger downside deviations. Hence, it provides for better modeling of risk averse preferences. The resulting m‐MAD model generates efficient solutions with respect to second degree stochastic dominance, while at the same time preserving the simplicity and linearity of the original MAD model. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 185–200, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call