Abstract

IntroductionReliable measurements of the protein content of biological fluids like serum or plasma can provide valuable input for the development of personalized medicine tests. Standard MALDI analysis typically only shows high abundance proteins, which limits its utility for test development. It also exhibits reproducibility issues with respect to quantitative measurements. In this paper we show how the sensitivity of MALDI profiling of intact proteins in unfractionated human serum can be substantially increased by exposing a sample to many more laser shots than are commonly used. Analytical reproducibility is also improved.MethodsTo assess what is theoretically achievable we utilized spectra from the same samples obtained over many years and combined them to generate MALDI spectral averages of up to 100,000,000 shots for a single sample, and up to 8,000,000 shots for a set of 40 different serum samples. Spectral attributes, such as number of peaks and spectral noise of such averaged spectra were investigated together with analytical reproducibility as a function of the number of shots. We confirmed that results were similar on MALDI instruments from different manufacturers.ResultsWe observed an expected decrease of noise, roughly proportional to the square root of the number of shots, over the whole investigated range of the number of shots (5 orders of magnitude), resulting in an increase in the number of reliably detected peaks. The reproducibility of the amplitude of these peaks, measured by CV and concordance analysis also improves with very similar dependence on shot number, reaching median CVs below 2% for shot numbers > 4 million. Measures of analytical information content and association with biological processes increase with increasing number of shots.ConclusionsWe demonstrate that substantially increasing the number of laser shots in a MALDI-TOF analysis leads to more informative and reliable data on the protein content of unfractionated serum. This approach has already been used in the development of clinical tests in oncology.

Highlights

  • Reliable measurements of the protein content of biological fluids like serum or plasma can provide valuable input for the development of personalized medicine tests

  • Extending the information content of the Matrix-Assisted Laser Desorption Ionization (MALDI) analysis of biological fluids assigned to Biodesix, Inc

  • We present a method for enhancing the sensitivity, reproducibility, and information content of measurements of the circulating proteome based on Matrix-Assisted Laser Desorption Ionization (MALDI) Time of Flight (TOF) mass spectrometry

Read more

Summary

Introduction

Reliable measurements of the protein content of biological fluids like serum or plasma can provide valuable input for the development of personalized medicine tests. Standard MALDI analysis typically only shows high abundance proteins, which limits its utility for test development. It exhibits reproducibility issues with respect to quantitative measurements. In this paper we show how the sensitivity of MALDI profiling of intact proteins in unfractionated human serum can be substantially increased by exposing a sample to many more laser shots than are commonly used.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.