Abstract

The development of viable photodynamic therapy protocols is often hindered by photosensitizers that require high-energy UV irradiation that has limited potential for clinical use due to its low tissue penetration. Herein, we report a strategy for extending the excitation wavelength of potential photosensitizers via the covalent attachment of a terbium(III)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetate complex (DO3A-Tb). The method was systematically demonstrated with a series of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene, anthracene, pyrene, and fluoranthene) to prepare six new complexes (Tb1-Tb6) with bathochromic shifts that extended into the visible region. Determination of their quantum yields for singlet oxygen (1O2) production at 350 and 420 nm showed significant enhancements from the parent molecule in all cases. Cell viability studies on cervical cancer cells (HeLa) and noncancerous MRC-5 cells showed no measurable cytotoxicity for all complexes prior to light irradiation. However, after irradiation at 420 nm (20 min, 9.27 J cm-2), Tb3-Tb6 were phototoxic to HeLa cells with IC50 values between 14.3-32.3 μM. Cell morphological studies and fluorescence microscopy with live/dead cell stains confirmed these findings. In addition, these complexes were highly stable in human blood plasma, with no significant degradation observed after 96 h at 37 °C. This excellent phototoxicity profile and high stability in blood plasma, coupled with the moderately lipophilic nature of the complexes, favorably indicate the potential of DO3A-Tb as a heavy atom-bearing moiety for modification of potential photosensitizers into ideal phototherapeutic drug candidates with longer excitation wavelengths for in vivo application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.