Abstract

We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the 1H and 29Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 us is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two sources of high-frequency noise: first, a fluctuating magnetic field with the proton Larmor frequency, equivalent to classical magnetic field noise imposed by the 1H nuclear spins of the cage organic substituents, and second, decoherence due to entanglement between the electron and the inner 29Si nuclear spin of the cage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.