Abstract

AbstractA direct-strength method (DSM) prediction approach is introduced and validated for metal building wall and roof systems that are constructed with steel panels through-fastened with screws to girts or purlins. The focus is capacity prediction for simple spans under wind uplift or suction; however, the DSM framework is generally formulated to accommodate gravity loads, continuous spans, standing-seam roofs, and insulated roof and wall systems in the future. System flexural capacity is calculated with the usual DSM approach; global buckling, local-global buckling interaction, and distortional buckling strengths are determined with a finite-strip Eigen-buckling analysis, including a rotational spring that simulates restraint provided by the through-fastened steel panel. The DSM flexural capacity is then reduced with a code-friendly equation consistent with existing standard provisions to account for the additional stress at the intersection of the web and free flange that occurs as the girt or purlin ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call