Abstract

The use of multiprocessors for discrete event simulation is an active research area where work has focused on strategies for model execution with little regard for the underlying formalism in which models may be expressed. However, a formalism-based approach offers several advantages including the ability to migrate models from sequential to parallel platforms and the ability to calibrate simulation architectures to model structural properties. In this article, we extend the DEVS (discrete event system specification) formalism, originally developed for sequential simulation, to accommodate the full potential of parallel processing. The extension facilitates exploitation of both internal and external event parallelism manifested in hierarchical, modular DEVS models. After developing a mapping of the extended formalism to parallel architectures, we describe an implementation of the approach on a massively parallel architecture, the Connection Machine. Execution results are discussed for a class of models exhibiting high external and internal event parallelism, the so-called broadcast models. These verify the tenets of the underlying theory and demonstrate that significant reduction in execution time is possible compared to the same model executed in serial simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call