Abstract

The energy-based pushover analysis was developed in previous studies to address the issues regarding the distortion of capacity curve in conventional pushover procedures. Despite the conceptual superiority of an energy-based approach, its application is currently restricted to 2D structures. This study aims to extend the concept of this approach to asymmetric-plan buildings and bidirectional seismic excitation. For this purpose, a new energy-based multimode pushover analysis is developed. The overall procedure is quite similar to the well-known Modal Pushover Analysis (MPA). In contrast, however, the work done by lateral loads and torques here is used in preference to displacement of the roof center as an index to establish capacity curves. The efficiency of the proposed procedure is evaluated through seismic assessment of a set of one-way asymmetric (asymmetric around one axis) RC shear wall buildings. The results are compared with those of the MPA, ASCE41-13 pushover procedure, and the nonlinear response history analysis as a benchmark solution. Findings show that the proposed procedure can provide more accurate results than the MPA and ASCE41-13 procedures, in estimating the structural demands such as wall-hinge rotations and drift ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call